

X-ray Optics Development at MSFC

Steve O'Dell NASA Marshall Space Flight Center

Precision mandrels

Full-cylinder metal mandrels

- D = 0.25 m, L = 0.20 m, F = 3.9 m
 - Fabricated at MSFC (1998 Jun) $HPD_{geom} \approx 26''$
- D = 0.50 m, L = 0.60 m, F = 8.4 m
 - Fabricated at MSFC (1999 Apr) HPD_{geom} ≈ 10"
 - Received 2 from Zeiss (1999 Aug) $HPD_{geom} \approx 5''$
- Potential use for smaller segments
 - Glass-coated for epoxy replication
 - Possible cost and time savings

Segment glassy-ceramic mandrels

- D = 1.6 m (30°), L = 1.0 m, F = 10.0 m
 - Being procured now HPD_{aeom} < 4"
- $D = 1.2 \text{ m} (30^{\circ}), L = 1.0 \text{ m}, F = 10.0 \text{ m}$
 - To be procured as option
- D = 1.0 m (30°), L = 1.0 m, F = 10.0 m
 - To be procured as option

X-ray testing

- Facilities for testing 10-m focal-length optics
 - 100-m "Stray-Light Facility"
 - 530-m X-ray Calibration Facility (XRCF)

Other support for epoxy replication

Near-term support activities

- Cleaning and coating large mandrels
 - Epoxy stripping of metal mandrels
- Scaling-up of epoxy-replication process
 - Assist GSFC with 50-cm optics
 - Vacuum housing fabrication
 - Mandrel heating strips for curing
- Metrology of large mandrels & mirrors
- Long-term MSFC role undecided

Plasma-sprayed carriers

- Plasma Processes, Inc. (Huntsville)
 - SBIR-2 under GSFC
 - MSFC support to SBIR-2 research
 - Plasma-sprayed Vanasil alloy (2.7 specific density)
 - Status
 - Refined powder-injection method
 - Are releasing more successfully
 - Sprayed on 50-cm-diameter rings and mandrel
 - Are obtaining high stress gradients in deposits
 - Continue to refine spray parameters

Electroformed-nickel optics

Programmatic status

- No longer funded by Constellation X
- Funded by SR&T and CETDP

Technical status

- Suspended work on NiCoP alloy
 - Insufficient resources for dual study
 - Stress control remained problematic
 - Other possible problems with alloy
- Are progressing well with bNiCo alloy
 - Very-low stress and stress sensitivity
 - Sufficient microstrength
- Are finding heat treatment beneficial
- Will electroform first bNiCo 0.5-m optic

Constellation-X Facility Science Team: 2001 May 03-04 X-ray Optics Development at MSFC

Plating-stress sensitivity

Plating-stress sensitivity

Heat-treatment effects

Heat-treatment process

- Recently began study of this process
- Heat (Ni-alloy) shell on (AI) mandrel
- Differing CTEs stretches nickel

Three effects of this heat treatment

- **Thermosetting**
 - Removes some strain from residual stress with permanent set
- Strain hardening
 - Increases microyield strength to stress experienced
- Stress relief
 - Promotes relaxation of internal stresses
 - Relaxation evident in 0.5-m optics

Must study for negative effects

- Need stability for expected conditions
- Blistering of NiCoP alloy

Heat-treatment effects

- 50M1S5 (flight-weight NiCoP shell)
 - HPD_{geom} = 38" (initial) \rightarrow 17" (after year)
- 50M1S7 (2 x flight-weight NiCoP shell)
 - HPD_{geom} = 75" (initial) \rightarrow 15" (heat treat)

Heat-treatment process

- Recently began study of this process
- Heat (Ni-alloy) shell on (Al) mandrel
- Differing CTEs stretches nickel

Three effects of this heat treatment

- Thermosetting
 - Removes some strain from residual stress with permanent set
- Strain hardening
 - Increases microyield strength to stress experienced
- Stress relief
 - Promotes relaxation of internal stresses
 - Relaxation evident in 0.5-m optics

Must study for negative effects

- Need stability for expected conditions
- Blistering of NiCoP alloy

High-Energy Replicated Optics

HERO bNiCo optics

- DU: 2 3-shell modules, F = 3 m
 - HPD_{shell} = 30" (30 keV, measured)
 - HPD_{system} = 45" (30 keV, measured)
- FU: 16 15-shell modules, F = 6 m
 - HPD_{shell} = 10" (goal)
 - HPD_{system} = 15" (goal)

HERO mandrels

- 30" mandrels commercially ground
- 10" mandrels commercially D-turned
- All polished at MSFC

